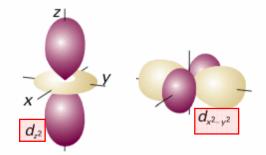
無機化学

2010年4月~2010年8月

第9回 6月9日

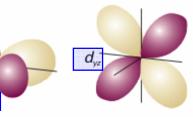
水素原子の構造と原子スペクトル·多電子原子の構造·典型元素 と遷移元素

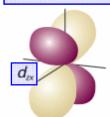
担当教員:福井大学大学院工学研究科生物応用化学専攻 准教授 前田史郎


E-mail: smaeda@u-fukui.ac.jp

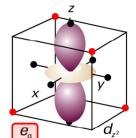
URL: http://acbio2.acbio.u-fukui.ac.jp/phychem/maeda/kougi

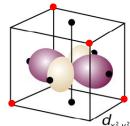
教科書:アトキンス物理化学(第8版)、東京化学同人


主に8・9章を解説するとともに10章・11章・12章を概要する

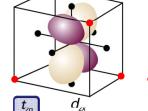

6月2日, 5つのdオービタルは $e_g(d_{x2-y2},d_{z2})$ と $t_{2g}(d_{xy},d_{yz},d_{zx})$ の2つのグループに分けることができる。これら2つのグループに分かれる理由を図を描いて説明せよ。

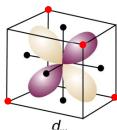
座標軸方向にロー ブが伸びている


座標軸の二等分線 方向にローブが伸 びている



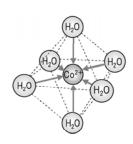
2


1

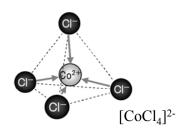


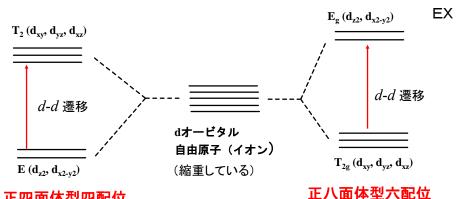
座標軸方向にローブ が伸びている

配位子が座標軸(●) 方向から金属に近づ くとローブに近いので、 静電反発が生じる

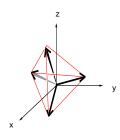


座標軸の二等分線方向にローブが伸びている

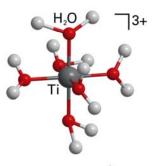

配位子が、正四面体頂点(赤丸)の方向から金属イオンに近づくとローブに近いので静電反発が生じる


 $[Co(OH_2)_6]^{2+}$

八面体型六配位の場合、配位子はx, y, z軸 (lacktriangle) 方向から金属イオンに近づく. この軸上にローブを持っているのは d_{z^2} , $d_{x^2-y^2}$ のみ. この 2 つの軌道は配位子との静電 反発でエネルギー状態が高くなる.

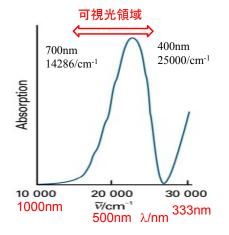

四面体型四配位の場合,配位子は正四面体の頂点方向(●)赤丸の方向から近づくので相互作用は小さい.


正四面体型四配位の場合、配位子はx, y, z軸方向ではなく正四面体の頂点方向(\bullet) から近づくので、 d_{xz} , d_{yz} , d_{xy} オービタルの方がエネルギーが高くなる.


正四面体型四配位

d-d 遷移のエネルギー差 は可視光領域にあること が多い. 金属イオン自身 は無色であっても、 遷移 金属錯体は色が着いて いることが多い.

5



1 [Ti(OH₂)₆]³⁺

正八面体型六配位の 遷移金属錯体の例

 $Ti^{3+}:[Ar]3d^{1}$

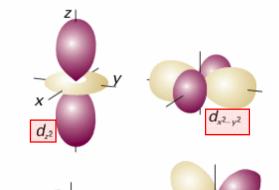
Ti³⁺の基底電子配置は3d¹なの で T_{γ_o} に電子が1つ入っている. この電子がd-d遷移を起こす.

500nm付近の緑色の光を吸収 するので赤色に見える

図14·13 [Ti(OH₂)₆]³⁺の水溶 液の電子吸収スペクトル

授業内容

- 1回 元素と周期表・量子力学の起源
- 2回 古典力学の破綻・波と粒子の二重性
- 3回 シュレディンガー方程式・波動関数のボルンの解釈
- 4回 並進運動:箱の中の粒子・トンネル現象
- 5回 振動運動:調和振動子・回転運動:球面調和関数
- 6回 角運動量とスピン・水素原子の構造と原子スペクトル
- 7回 多電子原子の構造・典型元素と遷移元素
- 8回 原子価結合法と分子軌道法
- 9回 種々の化学結合:イオン結合・共有結合・水素結合など
- 10回 分子の対称性と結晶構造
- 11回 非金属元素の化学
- 12回 典型元素の化学
- 13回 遷移元素の化学
- 14回 遷移金属錯体の構造・電子構造・分光特性


(g) dオービタル

ルの数	

副殼 副殻の中のオービタ m_1 0 3 38 **3p** $0, \pm 1$ 3 3d $0, \pm 1,$ 5 ± 2

n=3のとき、l=0.1.2を取ることができ、このM殻は、1個の 3sオービタル, 3個の3pオービタル, 5個の3dオービタルか ら成る.

EX

座標軸方向にロー ブが伸びている

座標軸の二等分線 方向にローブが伸 びている

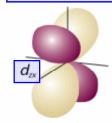
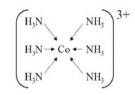



図10・16 dオービタルの境界面. 2つの節面が原子核の位置で 交差し、ローブを分断する、暗い部分と明るい部分は波動関数の 符号が互いに反対であることを示している.

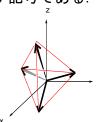
〇配位結合

配位結合は共有結合の1種と考えることができる。通常の共有 結合では、それぞれ電子を1つずつ持ったオービタルどうしの重 なりによって形成されるのに対し、配位結合は、電子を2つ持っ たオービタルと電子が入っていないオービタルの重なりによって 形成される. いずれにせよ、結合が生じると電子を2個(電子対) 共有することになる.

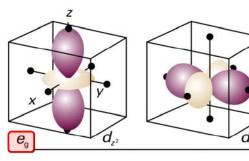
例: 塩化アンモニウム NH₄⁺ (H⁺ ← : NH₃) 金属錯イオン

ヘキサアンミンコバルト(III)イオン

10

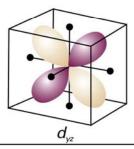

遷移金属錯体の電子エネルギー状態の分裂


遷移金属原子が配位子によって取り囲まれている状態. すなわち金属錯体を考えよう.


中心原子の電子状態は、周りの配位子の静電場の影響を 受ける。そのためにdオービタルのエネルギー状態の縮重 が解けて E_{g} ($d_{x^{2}}$, $d_{x^{2}-x^{2}}$)および T_{2g} (d_{xy} , d_{yy} , d_{xy})の2つに分裂 する. ここで、 E_g および T_{2g} はオービタルの対称性を表わ す記号である.

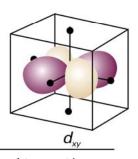
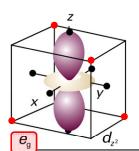
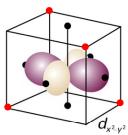
⁷正四面体型

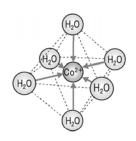
四配位錯体



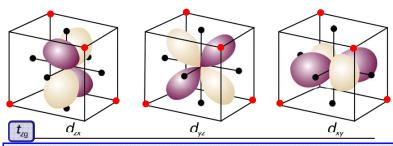
座標軸方向にローブ が伸びている

座標軸の二等分線 方向にローブが伸 びている

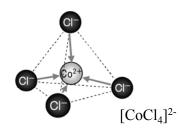





図10・16 dオービタルの境界面

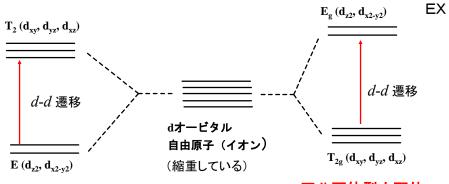
座標軸方向にローブ が伸びている


配位子が座標軸(●) 方向から金属に近づ くとローブに近いので, 静電反発が生じる

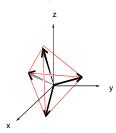
 $[Co(OH_2)_6]^{2+}$


八面体型六配位の場合、配位子はx, y, z軸 (lacktriangle) 方向から金属イオンに近づく. この軸上にローブを持っているのは d_{z^2} , d_{x^2,y^2} のみ. この2つの軌道は配位子との静電 反発でエネルギー状態が高くなる.

四面体型四配位の場合,配位子は正四面体の頂点方向(●)赤丸の方向から近づくので相互作用は小さい.

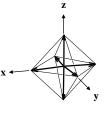

座標軸の二等分線方向にローブが伸びている

配位子が、正四面体頂点(赤丸)の方向から金属イオンに近づくとローブに近いので静電反発が生じる



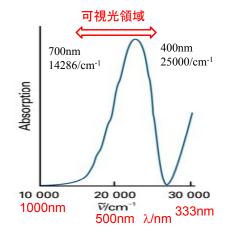
正四面体型四配位の場合、配位子はx, y, z軸方向ではなく正四面体の頂点方向(\bullet) から近づくので、 d_{xz} , d_{yz} , d_{xy} オービタルの方がエネルギーが高くなる.

14



正四面体型四配位

d-d 遷移のエネルギー差は可視光領域にあることが多い. 金属イオン自身は無色であっても, 遷移金属錯体は色が着いていることが多い.

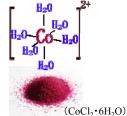


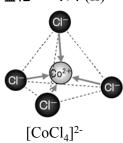
1 [Ti(OH₂)₆]³⁺ 正八面体型六配位の 遷移金属錯体の例

 $Ti^{3+}:[Ar]3d^{1}$

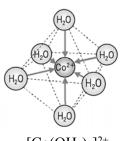
 Ti^{3+} の基底電子配置は $3d^{1}$ なので T_{2g} に電子が1つ入っている.この電子がd-d遷移を起こす.

500nm付近の緑色の光を吸収 するので赤色に見える


図14・13 [Ti(OH₂)₆]³⁺の水溶液の電子吸収スペクトル


水を加えると、青い塩化物から 赤い六水和物に変化する

塩酸を加えると、赤い六水和物から 青い塩化物に変化する.


(CoCl₂)

正四面体型四配位 建化对外 建螺丝 400g代 塩化コバルト(II)

正八面体型六配位

 $[Co(OH_2)_6]^{2+}$

http://chem-sai.web.infoseek.co.jp/cobalt.html

17

シリカゲル乾燥剤

シリカゲルは吸湿性があり、お菓子など の除湿剤として広く用いられてきた. しかし. シリカゲルは酸化ケイ素SiOっから構成され ており、水分を吸っても外観からは変化が ないため吸湿したかどうか判断できない. そこで、シリカゲルを塩化コバルトの極めて 薄い溶液で染めて青粒として混入していた。 水分の吸収度合によって色の変化があり、 吸着能力があるかどうか判断できる. 青粒 がピンク色になれば吸着能力はなくなった と判断できる.

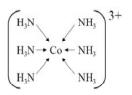
http://www.paw.hi-ho.ne.jp/y-uryu/sil2.pdf

18

345

感熱液

水75cm³に, 塩化アンモニウム20g, 塩化コバルト1gを溶かしたもの.

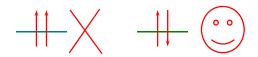


試験管に入れ加熱してみる. 温まると、「青っぽく」変色する. 加熱部分より上が、青くなっている 加熱をやめ、放置すると、冷えて元の色(赤紫?)に戻る。

多電子原子の構造

10・4 オービタル近似

多電子原子の波動関数は、すべての電子の座標の非常に 複雑な関数であるが、各電子が、"それぞれ自分の"オービタ ルを占めていると考えることによって、この複雑な波動関数を 各電子の波動関数の積の形で近似することができる. これを オービタル近似という.


$$\Psi(r_1, r_2, r_3, \ldots) \cong \Psi(r_1)\Psi(r_2)\Psi(r_3)\cdots$$

22

(b) パウリの排他原理

2個よりも多くの電子が任意に与えられた1つのオービタ ルを占めることはできず、もし、2個の電子が1つのオー ビタルを占めるならば、そのスピンは対になっていなくて はならない.

すなわち、4つの量子数がすべて同じ状態を取ることは できない. (n, l, m_l) が同じであれば、スピンsが½と-½ の対になっていなければならない.

(c) 浸透と遮蔽

多電子原子では、2sと2p(一般にすべて の副殻)は縮退していない.

電子は他の全ての電子からクーロン反発 を受ける. 原子核からアの距離にある電子 は、半径での球の内部にある全ての電子に よるクーロン反発を受けるが、これは原子 核の位置にある負電荷と等価である。この 負電荷は、原子核の実効核電荷をZeから $Z_{eff}e$ に引き下げる.

$$Z_{eff} = Z - \sigma$$

Zと Z_{eff} の差を遮蔽定数 σ という.

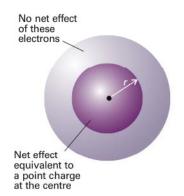


図10・19 遮蔽

352

21

遮蔽定数はs電子とp電子では異 なる。これは両者の動径分布が異 なるためである。s電子の方が同じ 殻のp電子よりも原子核の近くに 見出される確率が高いという意味 で内殻に大きく浸透している. s電 子はp電子よりも内側に存在確率 が高いので弱い遮蔽しか受けない. 浸透と遮蔽の2つの効果が組み合 わさった結果、s電子は同じ殻のp 電子よりもきつく束縛されるように なる.

浸透と遮蔽の2つの効果によって、多電子原子における副 353 殻のエネルギーが、一般に、

の順になるという結果がもたらされる。

表10·2 実効核電荷 $Z_{eff} = Z - \sigma$

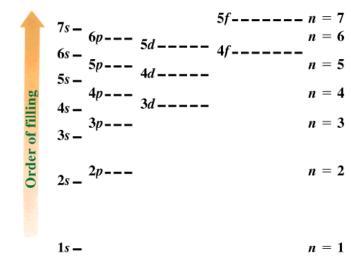
			33	
元素	Z	オービタル	遮蔽定数σ	有効核電荷 $Z_{e\!f\!f}$
Не	2	1s	0.3125	1.6875
C	6	1s	0.3273	5.6727
		2s	2.7834	3.2166
		2p	2.8642	3.1358

炭素原子の場合:1s電子は原子核に強く束縛されている.1sと2s. 2pとのエネルギー差は大きい、2p電子は、2s電子よりは原子核の 束縛が強くない. したがって, 各電子のエネルギーは1s<<2s<2pの 順である.

(d)構成原理(Aufbau principle)

(1)オービタルが占有される順序は次の通りである.

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s ...


- (2)電子はある与えられた副殻のオービタルのどれか1つを二重に占める前に、まず異なるオービタルを占める.
- (3)基底状態にある原子は、不対電子の数が最高になる配置をとる.

 $N(Z=7):[He]2s^22p_x^{-1}2p_y^{-1}2p_z^{-1}$

 $O(Z=8):[He]2s^22p_x^22p_y^12p_z^1$

25

Order of subshell filling for many electron atoms

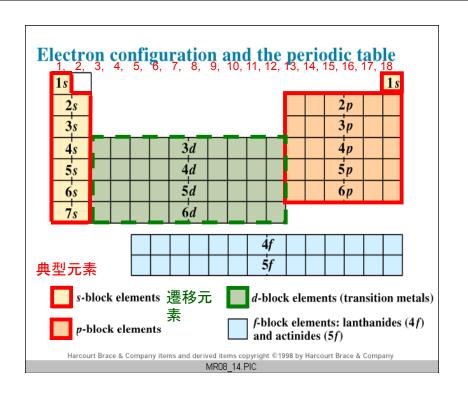
Harcourt Brace & Company items and derived items copyright ©1998 by Harcourt Brace & Company

MR08 13 PIC

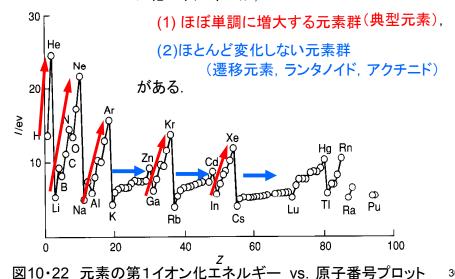
26

第6版図13・23 元素のオービタルエネルギー.

カリウム付近の3dオービ タルと4sオービタルの相対 的なエネルギーの大きさ に注目すること.

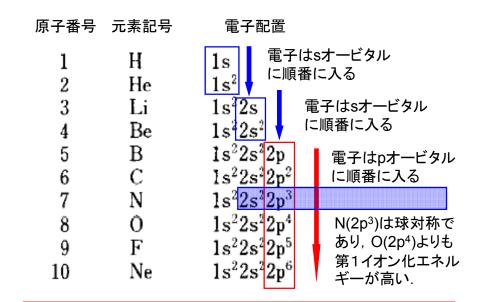

Z	元素	電子配置
1	Н	1s
2	He	$1s^2$
3	Li	$1s^22s$
4	Be	$1s^22s^2$
5	В	$1s^22s^22p$
6	C	$1s^22s^22p^2$
7	N	$1s^22s^22p^3$
8	0	$1s^22s^22p^4$
9	F	$1s^22s^22p^5$
10	Ne	$1s^22s^22p^6$
11	Na	[Ne]3s
12	Mg	$[Ne]3s^2$
13	Al	$[Ne]3s^23p$
14	Si	$[Ne]3s^23p^2$
15	P	$[Ne]3s^23p^3$
16	S	Ne 3s23p4
17	Cl	Ne 3s23p5
18	Ar	Ne 3s23p6

元素	電子配置
K Ca	$[Ar]4s$ $[Ar]4s^2$
Sc	Ar $3d4s^2$
Ti	$[Ar]3d^24s^2$
V	$[Ar]3d^34s^2$
Čr	$[Ar]3d^{4}s$
Mn	Ar $3d^{5}4s^{2}$
Fe	$[Ar]3d^4s^2$
Co	$Ar 3d^74s^2$
Ni	Ar $3d^84s^2$
Cu	[Ar]3d ¹⁰ 4s
Zn	$[Ar] 3d^{10} 4s^2$
Ga	Ar 3d104s24p
Ge	$[Ar]3d^{10}4s^24p^2$
As	$[Ar] 3d^{10} 4s^2 4p^3$
Se	[Ar]3d ¹⁰ 4s ² 4p ⁴
Br	Ar 3d104s24p5
Kr	$Ar 3d^{10}4s^24p^6$


	兀案	电力的心理
7	Rb	[Kr]5s
8	Sr	$[Kr]5s^2$
9	Y	$[Kr]4d5s^2$
0	Zr	$[Kr]4d^25s^2$
1	Nb	$[Kr]4d^45s$
2	Mo	[Kr]4d ⁵ 5s
3	Te	$[Kr]4d^{5}5s^{2}$
4	Ru	[Kr]4d ⁷ 5s

赤線で囲った元素は $ns^2np^x(x=1\rightarrow 6)$ と規則的であるが、

緑線で囲った元素は $nd^x ns^2(x=1\rightarrow 10)$ にはなっていない.



元素の第1イオン化エネルギーを原子番号に対してプロットすると、同一周期では右に行くほどイオン化エネルギーが、

原子番号 元素記号 電子配置 電子はsオービタル Н 1sに順番に入る He 3 Li $1s^{2}2s$ 電子はsオービタル に順番に入る $1s^22s^2$ Be $1e^{2}?s^{2}2p$ 第1周期のHeから第2 周期のLiへ移ると、イオ ン化エネルギーは小さく なる. また. Be→Bのよ うに、最外殻電子がs電 子からp電子に変わると ころでもイオン化エネル ギーは小さくなる.

同一周期の元素では、最外殻電子は同じである. 周期表の右 へ行くほど核電荷が大きいのでイオン化エネルギーが大きくなる.

同一周期の元素では、最外殻電子は同じである。周期表の右へ行くほど核電荷が大きいのでイオン化エネルギーが大きくなる。

(b)イオン化エネルギー

元素のイオン化エネルギー**【**は、その元素のいろいろな原子のうちの一つの基底状態、すなわち最低エネルギー状態から電子を取り除くのに必要な最小のエネルギーである.

水素型原子のエネルギーは次式で表される.

$$E_{n} = -\frac{Z^{2} \mu e^{4}}{32\pi^{2} \varepsilon_{0}^{2} \hbar^{2} n^{2}} = -\frac{Z}{n^{2}} hcR_{H}$$

水素原子では、Z=1であるから、n=1 のときの最低エネルギーは、 $E_1=-hcR_H$

したがって、電子を取り除くのに必要なイオン化エネルギーは、

$$I = hcR_H$$

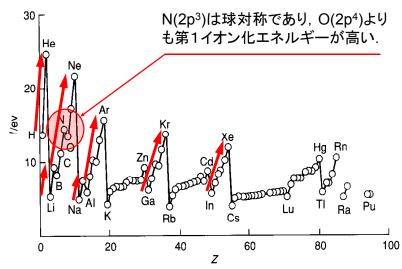
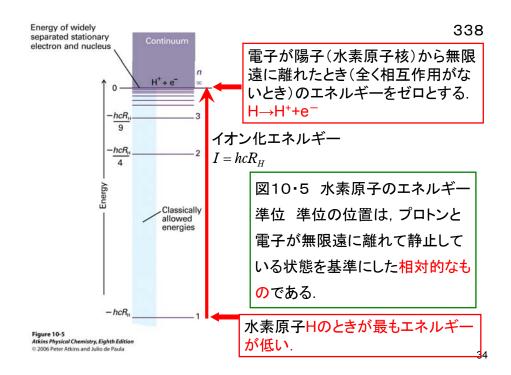



図13・24 元素の第1イオン化エネルギー vs. 原子番号プロット

同一周期の元素では、最外殻電子は同じ副殻の電子である。周期表の右へ行くほど核電荷が大きいのでイオン化エネルギーが大きくなる。

原子番号	元素記号	電子配置	
11	Na		子はsオービタル 順番に入る
12	Mg	$[Ne]3s^2$	明宙に入る
13	Al	[Ne]3s ² 3p	電子はpオービタル
14	Si	$[{ m Ne}] { m 3s}^2 { m 3p}^2$	に順番に入る
15	P	$[Ne] 3s^2 3p^3$	
16	S	$[{ m Ne}]3{ m s}^23{ m p}^4$	P(3p³)は球対称で
17	Cl	$[Ne]3s^23p^5$	あり, S(3p4)よりも
18	Ar	$[\mathrm{Ne}]3\mathrm{s}^23\mathrm{p}^6$	第1イオン化エネル ギーが高い.

同一周期の元素では、最外殻電子は同じ3p電子である。 周期表の右へ行くほど核電荷が大きいのでイオン化エネルギーが大きくなる.

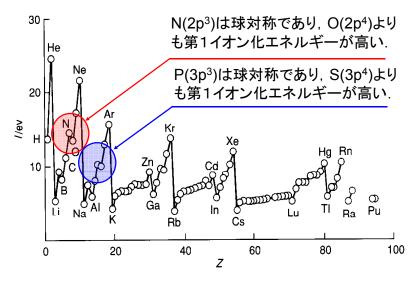


図10・22 元素の第1イオン化エネルギー. 原子番号に対してプロットしたもの.

37

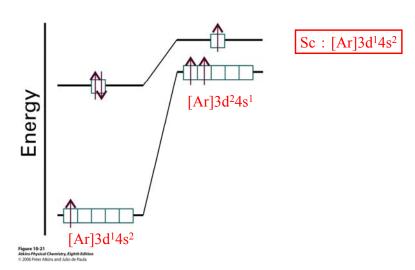
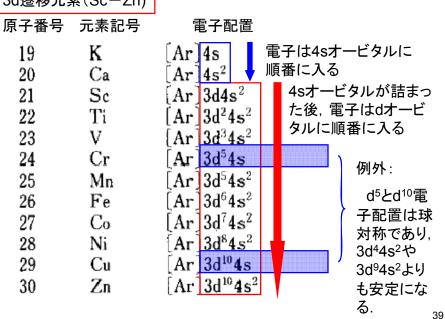



図10・21 Scの基底状態においては、もしこの原子が $[Ar]3d^24s^1$ ではなく、 $[Ar]3d^14s^2$ という電子配置をとれば3dオービタル内の強い電子-電子反発が最小になる.

38

3d遷移元素(Sc-Zn)

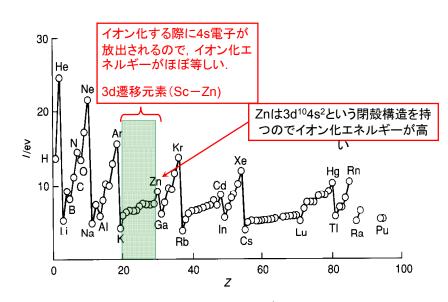
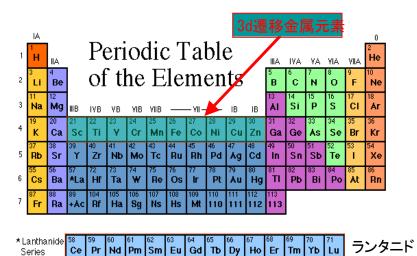
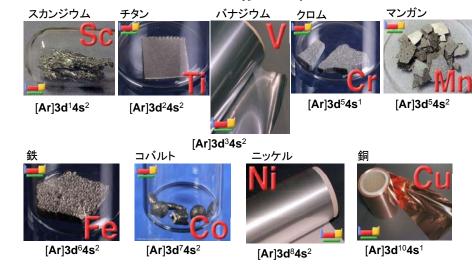



図10・22 元素の第1イオン化エネルギー. 原子番号に対してプロットしたもの.

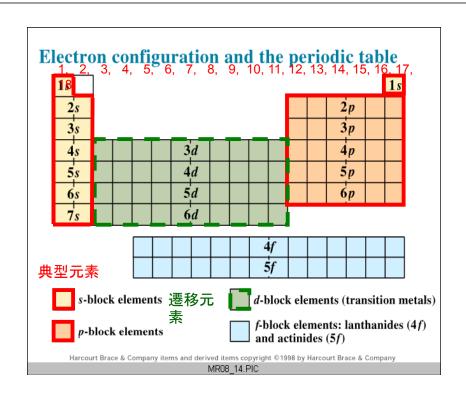
元素の周期表

99 100 101 Es Fm Md


アクチニド

Cf

+ Actinide


Series

3d遷移元素

・ WebElementsTM Periodic table (http://www.webelements.com/)より

42

原子番号	元素記号	電子配置	
31 32 33 34 35 36	Ga Ge As Se Br Kr	$egin{array}{l} & \left[\mathrm{Ar} ight] 3\mathrm{d}^{10}4\mathrm{s}^2 \mathrm{4p} \ & \left[\mathrm{Ar} ight] 3\mathrm{d}^{10}4\mathrm{s}^2 \mathrm{4p}^3 \ & \left[\mathrm{Ar} ight] 3\mathrm{d}^{10}4\mathrm{s}^2 \mathrm{4p}^4 \ & \left[\mathrm{Ar} ight] 3\mathrm{d}^{10}4\mathrm{s}^2 \mathrm{4p}^5 \ & \left[\mathrm{Ar} ight] 3\mathrm{d}^{10}4\mathrm{s}^2 \mathrm{4p}^6 \end{array}$	電子はpオービタル に順番に入る

4d遷移元素(Y-Pd)

原子番号 37	元素記号 Rb	[IXI OD	電子は4sオービタルに
38 39	Sr Y	$[Kr]$ $4d5s^2$	頁番に入る 5sオービタルが詰まっ 4.33 恵 7 はまたした
40 41	Zr Nb	[Kr]4d ² 5s ² [Kr]4d ⁴ 5s	た後, 電子はdオービ タルに順番に入る) 例外:
42 43	Mo Tc	[Kr]4d ⁵ 5s [Kr]4d ⁵ 5s ²	d ⁵ とd ¹⁰ 電
44 45 46	Ru Rh Pd	[Kr]4d ⁷ 5s [Kr]4d ⁸ 5s [Kr]4d ¹⁰	→ 子配置は球 対称であり, 4d ⁴ 4s ² や
47 48	Ag Cd	${ m [Kr]^{4d^{10}5s}} \ { m [Kr]^{4d^{10}5s^2}}$	・ 4d ⁹ 4s ² より も安定にな る. 45

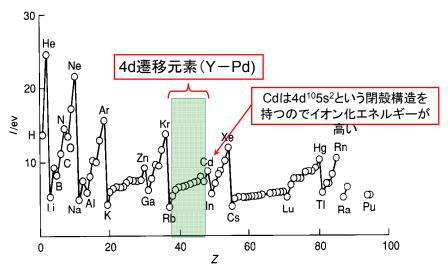
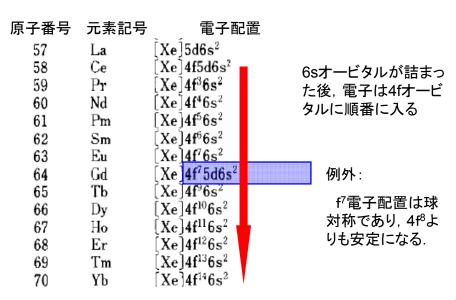



図10・22 元素の第1イオン化エネルギー. 原子番号に対してプロットしたもの.

46

ランタニド(稀土類元素)LaーYb

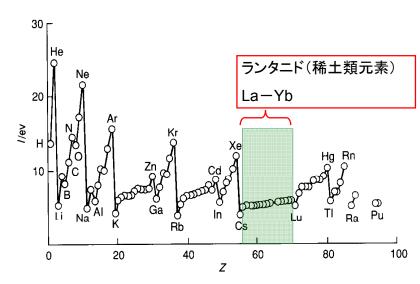
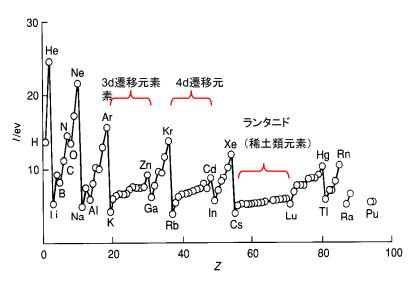
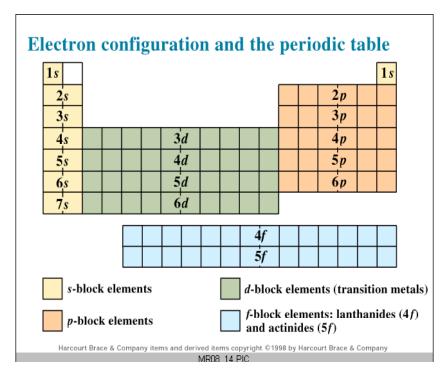


図10・22 元素の第1イオン化エネルギー. 原子番号に対してプロットしたもの.




図10・22 元素の第1イオン化エネルギー. 原子番号に対してプロットしたもの.

49

6月9日, 学生番号, 氏名

(1)3d遷移元素(Sc-Zn)の最外殻電子配置を示し、3d遷移元素のイオン化エネルギーがほぼ等しい理由を説明しなさい.

(2)本日の授業についての意見, 感想, 苦情, 改善提案などを書いてください.

