基礎量子化学 2013年4月~8月 118M講義室

4月26日 第3回 10章 原子構造と原子スペクトル 水素型原子の構造とスペクトル 10・2原子オービタルとそのエネルギー

担当教員:福井大学大学院工学研究科生物応用化学専攻教授

前田史郎

E-mail:smaeda@u-fukui.ac.jp

URL:http://acbio2.acbio.u-fukui.ac.jp/phychem/maeda/kougi

2013年度 授業内容

- 1. 水素型原子の構造とスペクトル
- 2. 原子オービタルとそのエネルギー
- 3. スペクトル遷移と選択律
- 4. 多電子原子の構造
- 5. ボルン・オッペンハイマー近似
- 6. 原子価結合法
- 7. 水素分子
- 8. 等核二原子分子

- 9. 多原子分子
- 10. 混成オービタル
- 11. 分子軌道法
- 12. 水素分子イオン
- 13. ヒュッケル分子軌道法(1)
- 14. ヒュッケル分子軌道法(2)
- 15. ヒュッケル分子軌道法(3)

4月20日

 \widetilde{v}

(1)パッシェン系列(n₁=3)の最短波長の遷移にともなって放射される 電磁波の波長 λ /nmを計算せよ. electron Paschen Series orbitals

m

0.1

Balmer series

2 3 4

 $\frac{1}{\lambda} = \mathsf{R} \Big(\frac{1}{\mathsf{n}_1^2} - \frac{1}{\mathsf{n}_2^2} \Big)$

Lyman

[例解] 最短波長ということは最もエネ ルギーが大きいことを意味しており, n₂=∞からn₁=3の準位への遷移であ る.

$$\widetilde{\nu} = R_{\rm H} \left(\frac{1}{3^2} - \frac{1}{\infty} \right) = \frac{109677}{9} (\rm cm^{-1})$$

$$12$$

$$\frac{1}{\lambda} = \frac{1}{\widetilde{\nu}} = \frac{9}{109677 \times 10^2} (\rm m) = 8.21 \times 10^{-7} (\rm m) = 821 (\rm nm)$$

波長821 nmで, スペクトルの赤外領域にある.

3

NIG

n=5

図10・1 水素原子のスペクトル 実測のスペクトルと, これを系列ご とに分解したもの.

(1) s電子(*l=*0)は原子核の位置で有限の値. 他の電子(*l≠*0)ではゼロ.
 (2) 1sには節面はない. 2s, 3sはそれぞれ1つまたは2つの節面を持つ.

6

(a)エネルギー準位

原子オービタルは原子内の電子に対する1電子波動関数である. 水素型原子オービタルは, n, l, m_lという3つの量子数で定義される.

主量子数:

 $n = 1, 2, 3 \cdots$

角運動量量子数(方位量子数):

磁気量子数:

$$l = 0, 1, 2, \dots, n-1$$

$$m_{l} = -l, -l+1, \dots, l-1, l$$

$$E_{n} = -\frac{Z^{2} \mu e^{4}}{32\pi^{2} \varepsilon_{0}^{2} \hbar^{2} n^{2}}$$

エネルギーは主量子数*n*だけで決まっている. 2sと2pオービタルのエネルギーは同じである. 3s, 3p, 3dオービタルでも同様である(多電子 原子ではこれらのエネルギーは同じではない).

:動径波動関数

水素型原子オービタルの1電子波動関数は,

$$\Psi(r,\theta,\phi) = R_{n,l}(r)Y_{l,m}(\theta,\phi)$$

$$Y_{l,m}(\theta,\phi) = Ne^{\pm im_l \phi} P_l^{|m_l|}(\cos \theta)$$
 :球面調和関数

$$P_{\!\scriptscriptstyle J}^{|m|}\!\left(\!\cos heta
ight)$$
 : ルジャンドル陪多項式

$$R_{n,l}(r) = N_{n,l} (\frac{\rho}{n})^{l} L_{n,l} e^{-\frac{\rho}{2n}}$$

$$\rho = \frac{2Zr}{a_0}, \qquad a_0 = \frac{4\pi\varepsilon_0\hbar^2}{m_e e^2}$$

 $L_{n,l}$:ラゲール陪多項式

表9·3 球面調和関数 $Y_{lm}(\theta,\phi)$

l	m_l	Y_{lm}
0	0	$\left(\frac{1}{4\pi}\right)^{1/2}$
1	0	$\left(\frac{3}{4\pi}\right)^{1/2}\cos\theta$
1	±1	$\mp \left(\frac{3}{8\pi}\right)^{1/2} \sin \theta e^{\pm i\phi}$
2	0	$\left(\frac{5}{16\pi}\right)^{1/2} \left(3\cos^2\theta - 1\right)$
2	±1	$\mp \left(\frac{15}{8\pi}\right)^{1/2} \cos\theta \sin\theta e^{\pm i\phi}$
2	±2	$\left(\frac{15}{32\pi}\right)^{1/2}\sin^2\theta e^{\pm 2i\phi}$

球面調和関数の規格化と直交性

$$\int_{0}^{2\pi} \int_{0}^{\pi} Y_{l'm'}^{*} Y_{lm} \sin \theta \mathrm{d}\theta \mathrm{d}\theta \mathrm{d}\phi = \delta_{l'l} \delta_{m'm}$$
ここで、クロネッカーのる関数は、
$$\delta_{l'l} = \begin{cases} 0 \quad l' \neq l \\ 1 \quad l' = l \end{cases}$$

9

第4の量子数であるスピン量子数 m_s は $\pm \frac{1}{2}$ である.

水素型原子の中の電子の状態を指定するためには,4つの量子数, つまり,**n,l,m₁,m**_sの値を与えることが必要である.

また、電子のオービタル角運動量の大きさは $\sqrt{l(l+1)}h$ であり、 その任意の軸上の成分は m_lh である. すなわち、 m_l は角運動量 のz成分の値を決める量子数である. 座標軸は空間に固定されてい るわけではない. 電場や磁場をかけたときに自動的に空間軸が決 まり、それをz軸とすることができる. つまり、 m_l は電場や磁場が原 子にかかったときに重要な働きをする量子数である. (b)イオン化エネルギー

元素のイオン化エネルギー【は、その元素のいろいろな原子のうちの 一つの基底状態、すなわち最低エネルギー状態から電子を取り除くの に必要な最小のエネルギーである.

水素型原子のエネルギーは次式で表される.

$$E_{n} = -\frac{Z^{2}\mu e^{4}}{32\pi^{2}\varepsilon_{0}^{2}\hbar^{2}n^{2}} = -\frac{Z^{2}}{n^{2}}hcR_{H}$$

水素原子では, Z = 1であるから, n = 1 のときの最低エネルギーは, $E_1 = -hcR_H$

したがって、電子を取り除くのに必要なイオン化エネルギーIは、 $I = hcR_H$

Energy of widely separated stationary 338 electron and nucleus 電子が陽子(水素原子核)から無限遠に離れ Continuum たとき(全く相互作用がないとき)のエネル ギーをゼロとする. H→H++e-H⁺ + e 0 -<u>haR</u> $-\frac{hcR}{4}$ イオン化エネルギー $I = hcR_H$ Energy 古典的に 図10-5 水素原子のエネルギー準位. 許される エネル 準位の位置は、プロトンと電子が無限遠に ギーは連 続してい 離れて静止している状態を基準にした.相 る 対的なものである. 水素原子Hのときが最もエネルギーが低い -haR 12

(c) 設と副設(shell and subshell)

nが等しいオービタルは1つの副殻を作る.

- *n*=1, 2, 3, 4,...
 - K L M N

nが同じで, lの値が異なるオービタルは, その殻の副殻を形成する.

l=0, 1, 2, 3, 4, 5, 6, ...

s p d f g h i

s, p, d, fの記号は, それぞれスペクトルの特徴を表わす 英単語のイニシャルから取られており, 順番に意味はない。 s ←sharp, p←principal, d←diffuse, f←fundamental

13

0≤*l*≤*n*-1であるから,*n*,*l*,*m*,の組み合わせは次の表のようになる.

п	l	副殻	m_l	副殻の中のオービタルの数
1	0	1s	0	1
2	0	2s	0	1
2	1	2p	0, ±1	3
3	0	3s	0	1
3	1	3 p	0, ±1	3
3	2	3d	$0, \pm 1, \pm 2$	5

元素の周期表

	IA										3	d遷	移到	金属	元	素		
1	1 H	IIA		Pe	eri	00	lic	Γ	a	ble	е		IIIA	IVA	٧A	VIA	VIIA	2 He
2	3 Li	4 Be		of	tl	ne	Е	le	m	en	<u>t</u> 8		5 B	6 C	7 N	°	9 F	10 Ne
3	11 Na	12 Mg	ШB	IVB	٧B	ΥIB	VIIB		— VII —		IB	IB	13 Al	14 Si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 ND	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 ₩	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 +Ac	104 Rf	105 Ha	106 Sg	107 Ns	108 Hs	109 Mt	110 110	111 111	112 112	113 113					
														•				

*Lanthanide	58	59	60	61	62	63	64	65	66	67	68	69	70	71	ランタニド
Series	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
+ Actinide	90	91	92	93	94	95	96	97	98	99	100	101	102	103	アクチニド
Series	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

3d遷移元素

WebElementsTM Periodic table (http://www.webelements.com/)

(d) 原子オービタル

水素型原子の基底状態で占有されるオービタルは1sオービタルである. *n*=1であるから,必然的に*l=m_i=*0となる. *Z*=1の水素原子の場合,次のように書ける.

$$\Psi = \frac{1}{\left(\pi a_0^3\right)^{1/2}} e^{-r/a_0}$$

この関数は、*r だけの関数である. θとφを含まないので*角度に無関係 であって、半径一定のあらゆる点で同じ値を持つ、つまり球対称である.

電子の確率密度を描写する方法の一つは、|ψ|²を影の濃さで表現することであるが、最も単純な手法は境界面だけを示す方法である.この境界面の形は、電子をほぼ90%以上の確率で含むものである.

20

341

例題10・2 オービタルの平均半径の計算

位置(動径)rを求めるための演算子は r である. 平均値を求めるためには, 期待値を計算すればよい. 期待値は(1)式で表される.

$$\langle r \rangle = \int \Psi^* \hat{r} \Psi d\tau = \int r |\Psi|^2 d\tau$$
 (1)

波動関数を ψとし, その動径部分を ℝ, 角度部分を ¥とすると,

$$\begin{aligned}
\Psi &= RY \\
\langle r \rangle &= \int r |\Psi|^2 d\tau \\
&= \int r R^2 |Y|^2 d\tau \\
&= \int_0^\infty r R^2 r^2 dr \int_0^{2\pi} \int_0^\pi |Y|^2 \sin\theta d\theta d\phi \\
&= \int_0^\infty r^3 R^2 dr
\end{aligned}$$

$$\begin{aligned}
x &= r \sin \vartheta \cos \phi \\
y &= r \sin \theta \sin \phi \\
z &= r \cos \theta \\
d\tau &= dx dy dz &= r^2 \sin \theta dr d\theta d\phi \\
&= \int_0^\infty r^3 R^2 dr
\end{aligned}$$
球調和関数は規格化されているので1である

 $\mathrm{d}\,\tau = r^2 \sin\theta\,\mathrm{d}r\mathrm{d}\,\theta\mathrm{d}\phi$

x

水素型原子の1sオービタル動径波動関数R_{1s}は次式で表される.

$$R_{1s} = 2 \left(\frac{Z}{a_0}\right)^{2} e^{-\frac{\rho}{2}} \quad \exists \exists \forall, \rho = \frac{2Zr}{a_0}$$

1sオービタルの平均半径<r>は,

2/

(e)動径分布関数

半径rで厚さdrの球殻上のどこかに電子を見いだす確率は、球対称な 1sオービタルの場合、

 $P(r) dr = 4\pi r^2 \Psi^2 dr$

である. この関数 $P(r)=4\pi r^2 \Psi^2$ を動径分布関数という.

 $4\pi r^2 dr dt 半径 r で厚さ dr の球殻の体積 dV である.$

$$dV = \iint r^{2} \sin \theta dr d\theta d\phi$$

= $r^{2} dr \int_{0}^{\pi} \sin \theta d\theta \int_{0}^{2\pi} d\phi$
= $r^{2} dr [-\cos \theta]_{0}^{\pi} [\phi]_{0}^{2\pi}$
= $r^{2} dr (-)(-1-1)(2\pi)$
= $4\pi r^{2} dr$
EX 10-

342

25

図8・20 3次元空間における波動関数のボルンの解釈. 3次元の系において、位置rにおける領域d τ =dxdydzに粒 子を見出す確率は $|\psi|^2$ d τ に比例する.

1sオービタルの動径分布関数
1sオービタルは

$$\Psi_{1s} = \frac{4Z^3}{a_0^3} e^{-\frac{2Zr}{a_0}}$$

であるから、
 $P_{1s}(r) = \frac{4Z^3}{a_0^3} r^2 e^{-\frac{2Zr}{a_0}}$
rô項はr→大で増大するが、

指数関数項exp(-2*Zr/a*₀)は *r*→大 で急速に減少し, *r*→∞でゼロと なるので, 極大値が現れる.

[復習]

r²の項はr→大で増大するが,

指数関数項 $exp(-2Zr/a_0)$ は $r \rightarrow$ 大で急速に減少し、 $r \rightarrow \infty$ でゼロとなる. したがって、これらの積 $r^2 exp(-2Zr/a_0)$ は極大値をもつ.

移転点では
$$\frac{dP(r)}{dr} = 0$$
 である.
 $\frac{dP(r)}{dr} = \frac{4Z^3}{a_0^3} \left(2re^{-\frac{-2Zr}{a_0}} + r^2 \left(-\frac{2Z}{a_0} \right) e^{-\frac{-2Zr}{a_0}} \right)$
 $= \frac{4Z^3}{a_0^3} e^{-\frac{2Zr}{a_0}} 2r \left(1 - \frac{Z}{a_0} r \right)$
 $r = \frac{a_0}{Z}$ で極大となる
= 0

水素原子, すなわちZ=1のときは $r=a_0$ (ボーア半径)で極大となる.

基底状態の水素原子で、電子が見い出される確率が最も高い最大 確率の半径はボーア半径a₀である. [例題10・3]

30

例題10.3 最大確率半径の計算

水素型原子において、1sオービタルは原子核の電荷が増加する につれて原子核に引き寄せられ最大確率半径は小さくなる.

31

342

1sオービタルではなく、球対称でない一般的なオービタルについて もあてはまるより一般的な式は、

 $P(r) = r^2 R(r)^2$

となる. ここでR(r)は動径波動関数である.

[根拠10・2] ある電子の波動関数が Ψ= RYであるときに、この電子 を体積素片dτの中に見い出す確率は

 $|\Psi|^2 d\tau = |RY|^2 d\tau$

である. ここで, $d\tau = r^2 dr \sin\theta d\theta d\phi$ である.

角度に関係なく、一定距離rの位置に電子を見い出す全確率は半 径rの球の表面全体にわたってこの確率を積分したものでありP(r)dr と書かれる. すなわち、 $\theta \ge \phi$ について積分すると、

$$P(r)dr = \int_0^{2\pi} \int_0^{\pi} R(r)^2 |Y(\theta,\phi)|^2 r^2 dr \sin\theta d\theta d\phi$$
$$= r^2 R(r)^2 dr \int_0^{2\pi} \int_0^{\pi} |Y(\theta,\phi)|^2 \sin\theta d\theta d\phi$$
$$= r^2 R(r)^2 dr$$

球面調和関数 $Y_{lm}(\theta,\phi)$ は規格化されているので、 $\iint |Y(\theta,\phi)|^2 \sin\theta d\theta d\phi = 1$ である. したがって、動径分布関数 $P_{n,l}(r) = r^2 R(r)^2$ である.

1sオービタルの場合も同様に、 $P(r)=r^2R(r)$ 2と書き表せる. しかし、球 面調和関数 $Y_{0,0}(\theta,\phi)=(1/4\pi)^{1/2}$ は定数であるから、上式1行目におい て、波動関数 $\Psi^2=(RY)$ 2を積分の外に出せる. すると、残りの積分は $\int r^2\sin\theta d\theta d\phi=4\pi r^2$ である. そのため、 $P(r) dr=|\Psi|^24\pi r^2 dr$ と書くのが一般 的である.

(1) s電子(*l*=0)は原子核の位置で有限の値. 他の電子(*l≠*0)ではゼロ. (2) 1sには節面はない. 2s, 3sはそれぞれ1つまたは2つの節面を持つ.

33

一般的な動径分布関数は、 $P(r) = r^2 R(r)^2$ で表される.ここで、R(r)は動径波動関数である.

図 21・6 (a) 水素原子の波動関数の動径部分 R(r). (b) 動径分布関数 r^2R^2 . 電子が核から 距離 $r \ge r+dr$ の間にある確率(角度変数について平均化した後の)は $4\pi r^2R^2 dr$ である [G. Herzberg, "Atomic Spectra", Dover, New York (1944)]

35

343-344

(f)	р 7	۲—	ビ	タル
-----	------------	----	---	----

n	l	副殻	m_l	副殻の中のオービタルの数
2	1	2p	$0, \pm 1$	3

2p 電子では, *l* = 1であり, その成分は*m_l* = -1,0, 1の3通りがある. *l* = 1, *m_l* = 0 の 2p オービタルの波動関数は

$$p_0 = R_{2,1}(r)Y_{1,0}(\theta,\phi) = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{\frac{5}{2}} r\cos\theta e^{-\frac{Zr}{2a_0}}$$
$$= r\cos\theta f(r)$$

極座標では $r\cos\theta = z$ であるから, このオービタルは P_z 軌道ともいう.

l=1, $m_l = \pm 1$ の2pオービタルの波動関数は次の形を持つ.

$$p_{\pm 1} = R_{2,1}(r)Y_{1,\pm 1}(\theta,\phi) = \mp \frac{1}{8\pi^{1/2}} \left(\frac{Z}{a_0}\right)^{2/5} r e^{-Zr/2a_0} \sin \theta e^{\pm i\phi}$$
$$= \mp \frac{1}{2^{1/2}} r \sin \theta e^{\pm i\phi} f(r)$$
$$e^{+i\phi} e^{-i\phi}$$

この波動関数はz軸のまわりに時計回りか,反時計回りの角運動 量をもつ粒子に対応する.これらの関数を描くには,実関数にな るように一次結合,

$$p_{x} = -\frac{1}{2^{1/2}} (p_{+1} - p_{-1}) = r \sin \theta \cos \phi f(r) = x f(r)$$
$$p_{y} = \frac{i}{2^{1/2}} (p_{+1} + p_{-1}) = r \sin \theta \sin \phi f(r) = y f(r)$$

をとるのが普通である.

$$\begin{aligned} p_{+1} - p_{-1} &= -\frac{1}{2^{1/2}} r \sin \theta e^{i\phi} f(r) - \frac{1}{2^{1/2}} r \sin \theta e^{-i\phi} f(r) \\ &= -\frac{1}{2^{1/2}} r \sin \theta f(r) (e^{-i\phi} + e^{i\phi}) \\ &= -\frac{1}{2^{1/2}} r \sin \theta f(r) (\cos \phi - i \sin \phi + \cos \phi + i \sin \phi) \\ &= -\frac{1}{2^{1/2}} r \sin \theta f(r) (2 \cos \phi) \\ &= -2^{1/2} r \sin \theta \cos \phi f(r) \\ p_x &= -\frac{1}{2^{1/2}} (p_{+1} - p_{-1}) \\ &= -\frac{1}{2^{1/2}} \{-2^{1/2} r \sin \theta \cos \phi f(r)\} \\ &= r \sin \theta \cos \phi f(r) \\ &= x f(r) \\ p_x &= -\frac{1}{2^{1/2}} (p_{+1} - p_{-1}) = r \sin \theta \cos \phi f(r) = x f(r) \end{aligned}$$

図10・15 pオービタルの境界面. 節面は原子核をよぎり、それぞれのオービタルの2つのローブを分断する. 暗い部分と明るい部分は, 波動関数の符号が互いに反対の領域を表している.

39

345

(g) dオービタル

п	l	副殻	m_l	副殻の中のオービタルの数
3	0	3s	0	1
3	1	3p	$0, \pm 1$	3
3	2	3d	$0, \pm 1, \pm 2$	5

n=3のとき, l=0,1,2を取ることができ, このM殻は, 1個の3s オービタル, 3個の3pオービタル, 5個の3dオービタルから成る.

図10・16 dオービタルの境界面.2つの節面が原子核の位置で交差 し、ローブを分断する.暗い部分と明るい部分は波動関数の符号が互 いに反対であることを示している.

結晶場中の電子エネルギー状態の分裂

遷移金属原子が配位子によって取り囲まれている状態,すな わち金属錯体を考えよう.

中心原子の電子状態は、周りの配位子の静電場の影響を受ける.そのためにdオービタルのエネルギー状態の縮重が解けて $(d_{z^2}, d_{x^2-y^2})$ および (d_{xx}, d_{yx}, d_{xy}) の2つに分裂する.

結晶場におけるエネルギー準位(1)

八面体型六配位 方向から金属 にローブを持っ この2つの軌道 エネルギー状態

八面体型六配位の場合,配位子はx, y, z軸 方向から金属イオンに近づく.この軸上 にローブを持っているのは $d_{z^2}, d_{x^2-y^2}$ のみ. この2つの軌道は配位子との静電反発で エネルギー状態が高くなる.

結晶場におけるエネルギー準位(2)

7

Х

正四面体型四配位の場合,配位子 はx,y,z軸方向からは近づかない. よって*d_{xz}, d_{yz}, d_{xy}*オービタルの方が エネルギーが高くなる.

4月26日,学生番号,氏名

(1)*l* = 1, *m*_{*l*} = ±1の2pオービタルの波動関数は次の形を持つ.

$$p_{\pm 1} = R_{2,1}(r)Y_{1,\pm 1}(\theta,\phi) = \mp \frac{1}{8\pi^{1/2}} \left(\frac{Z}{a_0}\right)^{2/3} r e^{-Zr/2a_0} \sin \theta e^{\pm i\phi}$$
$$= \mp \frac{1}{2^{1/2}} r \sin \theta e^{\pm i\phi} f(r)$$

 $p_+ \ge p_-$ の一次結合, つまり $p_+ + p_-$ をとることによって実数関数として, p_v を導け.

$$p_{y} = \frac{l}{2^{1/2}} (p_{+1} + p_{-1}) = r \sin \theta \sin \phi f(r) = y f(r)$$

(2)本日の授業についての意見、感想、苦情、改善提案などを書いて ください.

$$\begin{aligned} p_{+1} + p_{-1} &= -\frac{1}{2^{1/2}} r \sin \theta e^{i\phi} f(r) + \frac{1}{2^{1/2}} r \sin \theta e^{-i\phi} f(r) \\ &= \frac{1}{2^{1/2}} r \sin \theta f(r) (e^{-i\phi} - e^{i\phi}) \\ &= \frac{1}{2^{1/2}} r \sin \theta f(r) (\cos \phi - i \sin \phi - \cos \phi - i \sin \phi) \\ &= \frac{1}{2^{1/2}} r \sin \theta f(r) (-2i \sin \phi) \\ &= -2^{1/2} r i \sin \theta \sin \phi f(r) \\ p_y &= \frac{i}{2^{1/2}} (p_{+1} + p_{-1}) \\ &= \frac{i}{2^{1/2}} \{-2^{1/2} r i \sin \theta \sin \phi f(r)\} \\ &= r \sin \theta \sin \phi f(r) \\ &= y f(r) \\ p_y &= \frac{i}{2^{1/2}} (p_{+1} + p_{-1}) = r \sin \theta \sin \phi f(r) = y f(r) \end{aligned}$$